Course Outcomes

B.Sc. Mathematics (H)

Semester	Course Code	Course Outcomes
Sem-I (H)	MTMACOR01T	CO-1. To trace curve in two dimensional Cartesian and polar coordinates. CO-2. Able to work with higher order derivatives, and concavity, inflection points, envelopes, asymptotes of a curve and to calculate their arc length, area and surface of revolution. CO-3. To construct Reduction formulae, derivations and illustrations of reduction formulae. CO-4. To solve several ODEs. CO-5. To solve the problems related to two and three dimensions.
	MTMACOR02T	CO-1. To aware with polar representation of complex numbers, n-th roots of unity, De Moivre's theorem with its application. CO-2. Able to apply Descarte's rule of signs and to solve cubic and biquadratic equations, $\mathrm{AM} \geq \mathrm{GM} \geq \mathrm{HM}$ in inequality. CO-3. To familiar with equivalence relations, well-ordering property of positive integers, Division algorithm, principles of mathematical induction. CO-4. To find rank of a given matrix, and to solve systems of linear equations CO-5. To find out Eigen values, Eigen Vectors, inverse of a matrix though Cayley-Hamilton theorem.
Sem-II (H)	MTMACOR03T	CO-1. To understand some elementary concepts in set theory. CO-2. To understand the concepts of countability and uncountability. CO-3. To apply Archimedean property and its application to find limit points of a set. CO-4. To recognize bounded, convergent, divergent, Cauchy and monotonic. CO-5. To apply the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers.
	MTMACOR04T	CO-1. To use Picard's theorem to test existence of unique solution of 1st order ODE. CO-2. To learn some more technique to solve ODEs including Euler's equation, Bernoulli's equation. CO-3. To able to solve ODEs through the method of undetermined coefficients and method of variation of parameters. CO-4. To calculate power series solution of a differential equation. CO-5. Able to test continuity, differentiability and integrability of vector functions.

Sem-III (H)	MTMACOR05T	CO-1. To understand limits of functions including through their definition, continuous functions and uniform continuity theorem. CO-2. Aware about differentiability of a function. CO-3. To familiar with several mean value theorems and their applications. CO-4. Able to express Taylor's and Maclaurin's series expression of several functions. CO-5. Able to apply Taylor's theorem to convex functions and inequalities.
	MTMACOR06T	CO-1. To understand various types of groups, order of an element of a group, subgroups and their product. CO-2. To familiar with cyclic group and their classification, permutation on group and cosets. CO-3. To prove Lagrange's theorem and its application to prove Fermat's little theorem. CO-4. To understand external direct product of a finite number of groups and other familiar groups. CO-5. To learn group homomorphisms and their properties.
	MTMACOR07T	CO-1. To learn algorithms of various numerical methods including their convergences and error. CO-2. To find root of a algebraic an transcendental equation and matrix inverse by various numerical methods. CO-3. To learn various types of interpolation methods and finite differences, and their application on numerical differentiation. CO-4. To integrate numerically by several rules, and power method for determining eigen values. CO-5. To solve ordinary differential equations by Euler's method and Runge-Kutta methods.
	MTMACOR07P	CO-1. To learn algorithms of various programing problems. CO-2. Able to write C-programming of various methods to solve transcendental and algebraic equations. CO-3. Able to write C-programming of various methods to solve system of linear equations and ODEs. CO-4. Able to write C -programming for numerical integration and differentiation. CO-5. Able to write C-programming of various methods to fitting a polynomial functions, Power method to find eigen values.
	MTMSSEC01M	CO-1. Learn basic of high-level programming languages. CO-2. To know about some arithmetic operators and logical operators to construct flowchart. CO-3. Able to use for loop, while loop and do-while loop in Cprogramming. CO-4. Able to use arrays and multi-dimensional arrays in Cprogramming. CO-5. Capable to write programming by using functions.

Sem-V (H)	MTMACOR11T	CO-1. To conceptualize basic concepts of PDE, and able to solve different types of first order PDE. CO-2. To classify second order linear PDE and transform into their canonical forms. CO-3. To find out the solution of different types of initial and boundary value problems. CO-4. To find solution of Cauchy problems of first order PDE including the method of separation of variables. CO-1. To apply some application of ODE on particle dynamics like Central force, planetary motion, etc. CO-1. To conceptualize some advance theoretical results like automorphism, inner automorphism, etc. on group and cyclic group. CO-2. To know about characteristic subgroup, Commutator subgroup and its properties. CO-3. To understand the direct product of groups and use it to prove fundamental theorem of abelian groups. CO-4. To apply concepts and results of group actions to prove generalized Cayley's theorem and index theorem. CO-5. To realize the beauty of Sylow's theorem and its applications to find simplicity of alternating group.
	MTMADSE01T	CO-1. To analyze and solve linear programming models of real life situations. CO-2. To provide several methods for solving LPP including the concept of convex set and extreme points. CO-3. To understand the theory of the transportation problem, assignment problems etc. CO-4. To know about the relationships between the primal and dual problems. CO-5. To learn about the applications to two-person zero-sum game problems.
	MTMADSE03T	CO-1. To understand the basic concepts of classical probability. CO-2. To learn probability distribution and density function, and their properties with example. CO-3. To understand Chebyshev's inequality and central limit theorem and their applications. CO-4. To conceptualize random samples, sampling distributions and estimation of parameters. CO-5. Able to solve the real life data-based problems by testing of hypothesis.

Sem-VI (H)	MTMACOR13T	CO-1. To understand fundamental idea of metric spaces inclu Cantor's theorem and completeness. CO-2. To learn about continuity, uniform continuity, compactr homeomorphism of metric space, Banach fixed point theorem its application to ordinary differential equation. CO-3. To know about limits, continuity, Cauchy-Riemann equation differentiability of complex valued function. CO-4. To familiar with analytic functions and to evaluate Con integrals and learn about Cauchy integral formula. CO-5. To aware with fundamental theorem of algebra using Liouvi theorem, Laurent series expansion with its examples, absolute uniform convergence of power series.
	MTMACOR14T	CO-1. To familiar with Polynomial rings, division algorithm and consequences. CO-2. To know about Eisenstein criterion of reducibility test, divisibility in integral domains, unique factorization domains and Euclidean domains. CO-3. To find dual spaces, dual basis and transpose of a linear transformation. CO-4. To aware with Eigen spaces of a linear operator, CayleyHamilton theorem and canonical forms. CO-5. To work with inner product spaces, Gram-Schmidt orthogonalisation process, Bessel's inequality, Orthogonal projections and Spectral theorem.
	MTMADSE04T	CO-1. To familiar with General properties of polynomials including General properties of equations. CO-2. Able to apply Descartes's rule of signs positive and negative rule and to compute relation between the roots and the coefficients of equations. CO-3. To familiar with symmetric functions of the roots and its application including transform the equations. CO-4. Capable to solve reciprocal equations, binomial equations, cubic and biquadratic equations. CO-5. Able to apply Strum's theorem for determining the conditions for reality of the roots of an equation.
	MTMADSE06T	CO-1. To understand the basic law of forces, coplanar forces, equilibrium, friction and these types of topic used in classical mechanic. CO-2. To evaluate equations of motion referred to a set of rotating axes and Motion of a projectile in a resisting medium. CO-3. Able to find motion of a body/ point mass in different types of path under inverse square law of force. CO-4. To calculate degree of freedom, moments and products of inertia of a system. CO-5. To find motion of Compound pendulum and motion of a rigid body in two dimensions under finite and impulsive forces.

Course Outcomes

B.Sc. Mathematics (G)

Semester	Course Code	Course Outcomes
Sem-I (G)	MTMGCOR01T MTMHGEC01T	CO-1. Learn ε and δ definition of limit and continuity of a realvalued function. CO-2. Apply Leibnitz's theorem to derive successive differentiation. CO-3. Concept of Euler's theorem and its application on homogeneous function. CO-4. Able to find out tangents, normals, curvature, asymptotes, singular points of any curves. CO-5. To understand Rolle's theorem and several mean value theorems and their applications including the problems related to maxima minima and indeterminate form.
Sem-II (G)	MTMGCOR02T MTMHGEC02T	CO-1. To solve first order first degree ODEs including exact and non-exact equations and higher-order ODEs including properties of Wronskian. CO-2. To solve linear homogenous and non-homogeneous ODEs including Cauchy-Euler equation. CO-3. To solve simultaneous and total differential equations. CO-4. Able to form first order partial differential equations, to solve PDE by Lagrange's method and Charpit's method. CO-5. To classify second order partial differential equations.
Sem-III (G)	MTMGCOR03T MTMHGEC03T	CO-1. Understand some properties of sets in \mathbb{R}. CO-2. Able to solve problems related with real sequence. CO-3. Learn about infinite series and their tests of convergence. CO-4. To understand about sequences and series of functions. CO-5. Able to find radius of convergence of power series.
	MTMSSEC01M	CO-1. Learn high-level programming languages. CO-2. Able to construct flowchart. CO-3. To know about some arithmetic operators and logical operators. CO-4. Able to use for loop, while loop and do-while loop in Cprogramming. CO-5. Capable to write programming for finding out maximum, minimum of a given set of numbers.
Sem-IV (G)	MTMGCOR04T MTMHGEC04T	CO-1. To understand equivalence relations and partitions of a set. CO-2. To know about group, general linear group, permutation group, cyclic, general linear group and quaternion group. CO-3. To understand subgroup, cyclic subgroups, normal subgroup, quotient group, Lagrange's theorem and its application. CO-4. To define and understand rings and subrings. CO-5. To conceptualize with ideals, integral domains and fields.
	MTMSSEC02M	CO-1. To learn propositions and precedence of logical operators. CO-2. Able to apply propositional equivalence, CO-3. To apply predicates and quantifiers. CO-4. To aware with sets and subsets. CO-5. Able to understand standard operations on sets.

Sem-V (G)	MTMGDSE01T	CO-1. To form vector space and subspace over \mathbb{R} and to find their standard basis. CO-2. To conceptualize translation, dilation, rotation, reflection in a point, line and plane (in matrix form) and able to interpret eigen values and eigen vectors of these transformations including eigen spaces. CO-3. Able to calculate rank of matrices, to reduce in normal form and to solve linear homogeneous and non-homogeneous equations. CO-4. Able to reduce matrices to diagonal form through eigen values and eigen vectors. CO-5. Capable to applying elementary row operations to compute matrix rank and inverses, and to solve system of linear equations.
	MTMSSEC01M	CO-1. To understand arrays and multi-dimensional arrays. CO-2. Able to use arrays and multi-dimensional arrays in Cprogramming. CO-3. To understand about functions. CO-4. Capable to write programming by using functions. CO-5. Able to write programming C languages like $\mathrm{n}!, \mathrm{nCr}$, etc.
Sem-VI (G)	MTMGDSE03T	CO-1. To understand the algorithm and convergence of numerical methods to solve algebraic equations through bisection, Newton, regular falsi, fixed point iteration methods. CO-2. Able to find matrix inverse by LU decomposition, GaussJacobi and Gauss-Siedel methods. CO-3. To determine the function value through Lagrange and Newton interpolation formulae. CO-4. Capable to apply Euler's method for solving ordinary differential equations. CO-5. Able to calculate Integration by trapezoidal rule and, Simpson's rule.
	MTMSSEC02M	CO-1. To learn several operations on sets, like difference, identities, etc. CO-2. To understand relation on sets including its types. CO-3. To learn partitions, equivalence relations including congruence modulo relation. CO-4. To know partial ordering relations. CO-5. To aware about n-ary relations on sets.

